

1

TMS SOFTWARE

TMS PDF Library

DEVELOPERS GUIDE

TMS PDF Library

DEVELOPERS GUIDE

January 2017

Copyright © 2017 by tmssoftware.com bvba

Web: http://www.tmssoftware.com

Email: info@tmssoftware.com

http://www.tmssoftware.com/
mailto:info@tmssoftware.com

2

TMS SOFTWARE

TMS PDF Library

DEVELOPERS GUIDE

Index

Getting Started ... 3

Starting a new document .. 3

Adding pages .. 3

Drawing content on a page ... 4

Drawing Text .. 9

Font Embedding ... 18

Images ... 18

Document & Page Settings ... 21

Components that support PDF Export .. 21

3

TMS SOFTWARE

TMS PDF Library

DEVELOPERS GUIDE

Getting Started

Included in the TMS Component Pack is a PDF library that is capable of generating PDF files.

The PDF library supports creating documents, adding pages and page content such as HTML

formatted text, plain text, drawing primitives such as rectangles, circles and lines, Images

and many more …

To get started with the PDF library, add the AdvPDFLib unit.

Starting a new document

Starting a new document can be file-based, or TMemoryStream-based. To start a new

document, call the BeginDocument function. The BeginDocument always needs to be paired

with EndDocument, which is responsible for writing the contents to a file or TMemoryStream.

When the AFileName parameter in the BeginDocument call is empty, the contents will be

written to a TMemoryStream, returned by the EndDocument call. The EndDocument call also

has an additional parameter to allow opening the generated PDF file in the default PDF

reader application. This only occurs when the file exists and the BeginDocument has received

a valid AFileName parameter.

procedure TForm1.GeneratePDF(AFileName: string);

var

 p: TAdvPDFLib;

begin

 p := TAdvPDFLib.Create;

 try

 p.BeginDocument(AFileName);

 p.EndDocument;

 finally

 p.Free;

 end;

end;

Adding pages

Adding pages can be done by calling the NewPage function. The NewPage is responsible for

starting a new page content stream on which the graphics / text can be written. Each

NewPage call will clear the content buffer and allow you to start with new text and graphics.

Please note though that all appearance settings such as fill, stroke and font will be preserved,

so starting a new page will allow you to continue in the same appearance settings as the

4

TMS SOFTWARE

TMS PDF Library

DEVELOPERS GUIDE

previous page. When the NewPage call is missing, the EndDocument call automatically throws

an error indicating a new page needs to be added.

procedure TForm1.GeneratePDF(AFileName: string);

var

 p: TAdvPDFLib;

begin

 p := TAdvPDFLib.Create;

 try

 p.BeginDocument(AFileName);

 p.NewPage;

 p.EndDocument;

 finally

 p.Free;

 end;

end;

Drawing content on a page

After adding a new page, the page can be filled with content such as HTML formatted text,

plain text as well as some basic drawing primitives such as rectangles, circles and lines. The

PDF graphics engine is separate interface implementation that allows you to pass a reference

to this interface. This has the advantage that it blocks access to the main pdf library, to avoid

document / page corruption.

To starting drawing content, the pdf library has a Graphics property that provides access to

the drawing functionality. As a simple example, the following code exports a single-page PDF

with a horizontal gray line.

5

TMS SOFTWARE

TMS PDF Library

DEVELOPERS GUIDE

Please note that the Header and Footer text are added by default. The look and feel and text

can be configured separately with a series of Header and Footer properties.

The appearance of the line in the above PDF export is controlled via the Stroke property. The

stroke property supports setting the Color, Width and Kind. The Kind property is used to

change between a solid, dashed or dotted line, or to completely turn of line drawing. The

Stroke property is applied to each primitive that is drawn. The code below changes the

appearance of the line to be thicker, have a different kind and color. (Note that most type

values and constants can be found in the TAdvGraphics class unit).

procedure TForm1.GeneratePDF(AFileName: string);

var

 p: TAdvPDFLib;

begin

 p := TAdvPDFLib.Create;

 try

 p.BeginDocument(AFileName);

 p.NewPage;

 p.Graphics.Stroke.Color := gcRed;

 p.Graphics.Stroke.Width := 3;

 p.Graphics.Stroke.Kind := gskDashDotDot;

 p.Graphics.DrawLine(PointF(10, 50), PointF(100, 50));

 p.EndDocument(True);

 finally

 p.Free;

 end;

end;

When keeping the above configuration for stroke and adding code to draw a rectangle

instead, the stroke properties are also applied to the rectangle. The difference between a

line is that a rectangle is a path shape, and a path can also be filled. The fill is controlled

with the Fill property and supports horizontal and vertical gradients.

6

TMS SOFTWARE

TMS PDF Library

DEVELOPERS GUIDE

procedure TForm1.GeneratePDF(AFileName: string);

var

 p: TAdvPDFLib;

begin

 p := TAdvPDFLib.Create;

 try

 p.BeginDocument(AFileName);

 p.NewPage;

 p.Graphics.Stroke.Color := gcRed;

 p.Graphics.Stroke.Width := 3;

 p.Graphics.Stroke.Kind := gskDashDotDot;

 p.Graphics.DrawRectangle(RectF(10, 50, 100, 150));

 p.EndDocument(True);

 finally

 p.Free;

 end;

end;

Applying a gradient is done through the Fill property as demonstrated in the following sample.

procedure TForm1.GeneratePDF(AFileName: string);

var

 p: TAdvPDFLib;

begin

 p := TAdvPDFLib.Create;

 try

 p.BeginDocument(AFileName);

7

TMS SOFTWARE

TMS PDF Library

DEVELOPERS GUIDE

 p.NewPage;

 p.Graphics.Stroke.Color := gcRed;

 p.Graphics.Stroke.Width := 3;

 p.Graphics.Stroke.Kind := gskDashDotDot;

 p.Graphics.Fill.Kind := gfkGradient;

 p.Graphics.Fill.Color := gcBlue;

 p.Graphics.Fill.ColorTo := gcOrange;

 p.Graphics.DrawRectangle(RectF(10, 50, 100, 150));

 p.EndDocument(True);

 finally

 p.Free;

 end;

end;

As already mentioned, the rectangle, circle and line drawing functionality is based on paths.

The pdf library also exposes a set of drawing calls to construct your own path. Below is a

sample of drawing a star shape filled with a gradient fill and a dotted stroke.

procedure TForm1.GeneratePDF(AFileName: string);

var

 p: TAdvPDFLib;

 st: TPointF;

 rad, angle, x, y: Single;

 I: Integer;

begin

 p := TAdvPDFLib.Create;

 try

8

TMS SOFTWARE

TMS PDF Library

DEVELOPERS GUIDE

 p.BeginDocument(AFileName);

 p.NewPage;

 p.Graphics.Stroke.Color := gcBlue;

 p.Graphics.Stroke.Width := 1;

 p.Graphics.Stroke.Kind := gskDot;

 p.Graphics.Fill.Kind := gfkGradient;

 p.Graphics.Fill.Orientation := gfoHorizontal;

 p.Graphics.Fill.Color := gcLightcyan;

 p.Graphics.Fill.ColorTo := gcSteelblue;

 st := PointF(100, 100);

 rad := 75;

 angle := 0;

 x := rad * Sin(angle * Pi / 5) + st.X;

 y := rad * Cos(angle * PI / 5) + st.Y;

 p.Graphics.DrawPathBegin;

 p.Graphics.DrawPathMoveToPoint(PointF(x, y));

 for I := 1 to 5 do

 begin

 x := rad * sin((i * 4 * pi + angle) / 5) + st.X;

 y := rad * cos((i * 4 * pi + angle) / 5) + st.Y;

 p.Graphics.DrawPathAddLineToPoint(PointF(x, y));

 end;

 p.Graphics.DrawPathClose;

 p.Graphics.DrawPathEnd;

 p.Graphics.DrawRestoreState;

 p.EndDocument(True);

 finally

 p.Free;

 end;

end;

9

TMS SOFTWARE

TMS PDF Library

DEVELOPERS GUIDE

Drawing Text

Drawing text on a PDF page is done via the DrawText function. The DrawText has a set of

parameters to allow drawing wordwrapped text in a rectangle, or simply as-is at a specific

position. The DrawText function has a set of overloads that also supports column drawing.

Each call to DrawText returns a value that can either contain the calculated text rectangle or

the amount of left-over characters after an overflow is detected when drawing text in a

column.

The font that is used when drawing text can be controlled separately via the Font property.

With this property, the font name, size, color and style can be set.

procedure TForm1.GeneratePDF(AFileName: string);

var

 p: TAdvPDFLib;

begin

 p := TAdvPDFLib.Create;

 try

 p.BeginDocument(AFileName);

 p.NewPage;

 p.Graphics.Font.Name := 'Segoe UI';

 p.Graphics.Font.Size := 16;

 p.Graphics.Font.Color := gcRed;

 p.Graphics.Font.Style := [TFontStyle.fsBold];

 p.Graphics.DrawText('Hello World !', PointF(10, 50));

10

TMS SOFTWARE

TMS PDF Library

DEVELOPERS GUIDE

 p.EndDocument(True);

 finally

 p.Free;

 end;

end;

The above sample draws a 16 point single-line text in a red color with a bold style. The

supported fonts in a PDF is based on the operating system font set on which the PDF is

generated. If a specific font or a font name and style combination is not found, the font will

fall back on one of the entries specified in the FontFallBackList property. The

FontFallBackList is already initialized with a limited set of default operating system fonts, but

you can easily add your own fonts, if they are installed and available on the operating system

on which the PDF is generated.

The pdf engine recognizes the Delphi carriage return(#13) and line feed(#10) combination in

order to break text in lines. To break the above “Hello World !” in 2 lines add the #13#10

combination.

procedure TForm1.GeneratePDF(AFileName: string);

var

 p: TAdvPDFLib;

begin

 p := TAdvPDFLib.Create;

 try

 p.BeginDocument(AFileName);

 p.NewPage;

 p.Graphics.Font.Name := 'Segoe UI';

 p.Graphics.Font.Size := 16;

 p.Graphics.Font.Color := gcRed;

 p.Graphics.Font.Style := [TFontStyle.fsBold];

 p.Graphics.DrawText('Hello'#13#10'World !', RectF(10, 50, 150, 100));

 p.EndDocument(True);

11

TMS SOFTWARE

TMS PDF Library

DEVELOPERS GUIDE

 finally

 p.Free;

 end;

end;

If you are not using #13#10 in your text, but want to automatically wordwrap text based on

the width of a rectangle then you can change the drawing functionality to add a TRectF

parameter instead of a TPointF. The following sample draws 3 different lines of text in the

same rectangle. As the text length changes, the text is automatically wordwrapped before

the width of the rectangle is reached.

procedure TForm1.GeneratePDF(AFileName: string);

var

 p: TAdvPDFLib;

 r: TRectF;

begin

 p := TAdvPDFLib.Create;

 try

 p.BeginDocument(AFileName);

 p.NewPage;

 p.Graphics.Font.Name := 'Arial';

 p.Graphics.Fill.Color := gcNull;

 r := RectF(10, 50, 100, 100);

 p.Graphics.DrawRectangle(r);

 p.Graphics.DrawText('A single line', r);

 r := RectF(10, 105, 100, 155);

 p.Graphics.DrawRectangle(r);

 p.Graphics.DrawText('This is a single line', r);

 r := RectF(10, 160, 100, 210);

 p.Graphics.DrawRectangle(r);

 p.Graphics.DrawText('This is a single line, with more text', r);

12

TMS SOFTWARE

TMS PDF Library

DEVELOPERS GUIDE

 p.EndDocument(True);

 finally

 p.Free;

 end;

end;

As already mentioned, the PDF library also supports drawing text in one or multiple columns.

If the end of a column is reached, and the drawing call specifies multiple columns, the text is

automatically drawn in the next available column. Below is a sample that demonstrates this

based on a long text drawn in 3 columns. The first drawing sets a font of 8 points which draws

the text completely in the first column. As the font size increases, more columns are used.

procedure TForm1.GeneratePDF(AFileName: string);

var

 p: TAdvPDFLib;

 s: string;

begin

 p := TAdvPDFLib.Create;

 try

 s := 'Lorem Ipsum is simply dummy text of the printing and typesetting industry. Lorem

Ipsum has been the industry''s standard dummy'+

 'text ever since the 1500s, when an unknown printer took a galley of type and

scrambled it to make a type specimen book. '+

13

TMS SOFTWARE

TMS PDF Library

DEVELOPERS GUIDE

 'It has survived not only five centuries, but also the leap into electronic typesetting,

remaining essentially unchanged. It'+

 ' was popularised in the 1960s with the release of Letraset sheets containing Lorem

Ipsum passages, and more recently with des'+

 'ktop publishing software like Aldus PageMaker including versions of Lorem Ipsum.';

 p.BeginDocument(AFileName);

 p.NewPage;

 p.Graphics.Font.Name := 'Arial';

 p.Graphics.Font.Size := 8;

 p.Graphics.Fill.Color := gcNull;

 p.Graphics.DrawText(s, RectF(10, 50, 500, 400), 3);

 p.EndDocument(True);

 finally

 p.Free;

 end;

end;

14

TMS SOFTWARE

TMS PDF Library

DEVELOPERS GUIDE

When modifying the same sample and choosing a different font size, the text is flowed into

the next column.

procedure TForm1.GeneratePDF(AFileName: string);

var

 p: TAdvPDFLib;

 s: string;

 r: TRectF;

begin

 p := TAdvPDFLib.Create;

 try

 s := 'Lorem Ipsum is simply dummy text of the printing and typesetting industry. Lorem

Ipsum has been the industry''s standard dummy'+

 'text ever since the 1500s, when an unknown printer took a galley of type and

scrambled it to make a type specimen book. '+

 'It has survived not only five centuries, but also the leap into electronic typesetting,

remaining essentially unchanged. It'+

 ' was popularised in the 1960s with the release of Letraset sheets containing Lorem

Ipsum passages, and more recently with des'+

 'ktop publishing software like Aldus PageMaker including versions of Lorem Ipsum.';

 p.BeginDocument(AFileName);

 p.NewPage;

 p.Graphics.Font.Name := 'Arial';

 p.Graphics.Font.Size := 14;

 p.Graphics.Fill.Color := gcNull;

 r := RectF(10, 50, 500, 400);

 p.Graphics.DrawRectangle(r);

 p.Graphics.DrawText(s, r, 3);

 p.EndDocument(True);

 finally

 p.Free;

 end;

end;

15

TMS SOFTWARE

TMS PDF Library

DEVELOPERS GUIDE

When the rectangle is not large enough to contain all text, or the amount of columns

specified does not suffice for displaying all of the text, the DrawText function returns a value

of the amount of characters that are not drawn. Each DrawText call has an additional

parameter to calculate the text. In this case, the method also returns a TRectF or Integer

parameter but does not actually draw the text. In particular for the DrawText functionality

that has the ability to draw text in multiple columns, you can increase the width/height or

amount of columns in a while loop, until the character overflow count is 0. This is

demonstrated in the next sample. Note that this sample shows the original requested

rectangle, and the rectangle necessary for displaying all text after calculating the amount of

overflow characters.

The sample indicates the original requested rectangle to draw the text in blue and the actual

rectangle calculated with detection of character overflow in red.

16

TMS SOFTWARE

TMS PDF Library

DEVELOPERS GUIDE

The PDF library also supports HTML formatted text drawing. HTML formatted text is only

available for drawing at a specific position or wordwrapped in a specific rectangle. Character

overflow detection is not supported for HTML formatted text drawing. Below is a sample that

draws the above text with HTML formatting applied.

procedure TForm1.GeneratePDF(AFileName: string);

var

 p: TAdvPDFLib;

 s: string;

 r: TRectF;

begin

 p := TAdvPDFLib.Create;

 try

 s := 'Lorem Ipsum is simply dummy text of the printing and typesetting industry.

Lorem Ipsum has been the industry''s standard dummy'+

 'text ever since the 1500s, when an <i>unknown printer took a

galley</i> of type and scrambled it to make a type specimen book. '+

 'It has survived not only five centuries, but also

the ^{leap} _{into} <u>electronic</u> typeset'+

 'ting,

remaining essentially <font color"gcYellow" face="Comic Sans MS"

bgcolor="gcBlue"><s>unchanged</s>. It'+

17

TMS SOFTWARE

TMS PDF Library

DEVELOPERS GUIDE

 ' was popularised in the 1960s with the release of Letraset sheets containing Lorem

Ipsum passages, and more recently with des'+

 'ktop publishing software like Aldus

PageMaker including versions of Lorem Ipsum.';

 p.BeginDocument(AFileName);

 p.NewPage;

 p.Graphics.Font.Name := 'Arial';

 p.Graphics.Font.Size := 10;

 p.Graphics.Fill.Color := gcNull;

 r := RectF(10, 50, 300, 400);

 p.Graphics.DrawHTMLText(s, r);

 p.EndDocument(True);

 finally

 p.Free;

 end;

end;

The above code renders the HTML formatted text in a rectangle with wordwrapping, but can

easily be rendered as-is starting from a specific position, and then only breaks the text on the

 tag. The HTML formatted text is based on the Mini HTML rendering engine.

18

TMS SOFTWARE

TMS PDF Library

DEVELOPERS GUIDE

Each DrawText or DrawHTMLText call returns a TRectF containing the text width/height or

character count overflow. These calculations can also be retrieved with the CalculateText

and CalculateHTMLText calls.

Font Embedding

By default, each font that is used in the PDF library is embedded to make sure the PDF is

readable on other operating systems. This means that for the rendered characters, a font

subset is created and included to make sure the size of the PDF file is a small as possible. If

the PDF file is created for printing purposes on the operating system on which it is generated,

you could consider turning off font embedding, to have even smaller PDF files and speed up

the creation process. Font embedding can be controlled with the EmbedFonts property.

Images

The PDF library supports drawing images at a specific position or with optional stretching and

aspect ration in a rectangle. To draw images, you can use the DrawImage,

DrawImageFromFile or DrawImageWithName functions. The first method takes an existing

image object, the second method takes an existing image file and the last method requires

assigning a BitmapContainer and then uses the ABitmapName parameter to find & draw the

image on the PDF page canvas. Below is a sample that demonstrates these three ways of

adding images.

procedure TForm1.GeneratePDF(AFileName: string);

var

 p: TAdvPDFLib;

 MyImage: TBitmap;

begin

 p := TAdvPDFLib.Create;

 MyImage := TBitmap.Create;

 try

 p.BitmapContainer := ADVBitmapContainer1;

 p.BeginDocument(AFileName);

 p.NewPage;

 p.Graphics.Font.Name := 'Arial';

 p.Graphics.Font.Size := 8;

 p.Graphics.Fill.Color := gcNull;

 p.Graphics.DrawImageWithName('MyImage', PointF(10, 50));

 p.Graphics.DrawImageFromFile('MyImage.jpg', PointF(160, 50));

19

TMS SOFTWARE

TMS PDF Library

DEVELOPERS GUIDE

 MyImage.LoadFromFile('MyImage.jpg');

 p.Graphics.DrawImage(MyImage, PointF(310, 50));

 p.Graphics.DrawText('Rendering from image container', PointF(10, 100));

 p.Graphics.DrawText('Rendering from memory image', PointF(160, 100));

 p.Graphics.DrawText('Rendering from file', PointF(310, 100));

 p.EndDocument(True);

 finally

 MyImage.Free;

 p.Free;

 end;

end;

Assigning an image container can also be used to render images that are added through the

IMG tag. This is demonstrated below, based on the HTML formatted text sample.

procedure TForm1.GeneratePDF(AFileName: string);

var

 p: TAdvPDFLib;

 s: string;

 r: TRectF;

begin

 p := TAdvPDFLib.Create;

 try

 s := 'Lorem Ipsum is simply dummy text of the printing and typesetting industry.

Lorem Ipsum has been the industry''s standard dummy'+

 'text ever since the 1500s, when an <i>unknown printer took a

galley</i> of type and scrambled it to make a type specimen book. '+

 'It has survived not only five centuries, but also

the ^{leap} _{into} <u>electronic</u> typeset'+

20

TMS SOFTWARE

TMS PDF Library

DEVELOPERS GUIDE

 'ting,
remaining essentially <font color"gcYellow"

face="Comic Sans MS" bgcolor="gcBlue"><s>unchanged</s>. It'+

 ' was popularised in the 1960s with the release of Letraset sheets containing Lorem

Ipsum passages, and more recently with des'+

 'ktop publishing software like Aldus

PageMaker including versions of Lorem Ipsum.';

 p.BitmapContainer := ADVBitmapContainer1;

 p.BeginDocument(AFileName);

 p.NewPage;

 p.Graphics.Font.Name := 'Arial';

 p.Graphics.Font.Size := 10;

 p.Graphics.Fill.Color := gcNull;

 r := RectF(10, 50, 300, 400);

 p.Graphics.DrawHTMLText(s, r);

 p.EndDocument(True);

 finally

 p.Free;

 end;

end;

21

TMS SOFTWARE

TMS PDF Library

DEVELOPERS GUIDE

Document & Page Settings

A new document can be configured to add meta-data. Below is an overview which meta-data

is supported by the PDF library.

Author, Creator, Title, Subject and Keywords. The first four meta-data entries are strings and

the Keywords entry is a list of strings. These values can be added directly on PDF document

level.

Each new page starts with a header and footer and a specific page size. The header & footer

can be customized with the Header* and Footer* properties. These include size, margins,

alignment and font. The header and footer also supports HTML formatted text. By default,

the page size is set to portrait A4, but can easily be changed by setting the PageSize and

PageOrientation properties. Optionally a custom page size can be configured by setting the

PageSize property to psCustom. The PageWidth and PageHeight properties can be used to set

the custom page size. These properties can also be used to retrieve the current applied

PageWidth and PageHeight independent of the PageSize property setting.

Components that support PDF Export

Below is a list of components that support exporting to a PDF, all components inherit from a

base TAdvPDFIO component that supports configuration of meta-data and header and footer

as well as custom drawing / customization through events.

- TAdvStringGrid
- TAdvMemo
- TAdvRichEditor
- TPlanner

To get started, drop one of the TAdv*PDFIO components on the form. Call the Save function

to save to a file or stream.

